\qquad
Grade: \qquad Date: \qquad

1. The new TV program "LEGO MASTERS" attracted 1.377 million Aussie viewers on its first night. This smashed the "MY KITCHEN
 RULES" viewer numbers of 962,000 for the final. What is the SUM of these viewer numbers, and by how many viewers did LEGO MASTERS beat MKR?

2. Mason's school raised $\$ 1,350$ at the 2018 Mother's Day stall. This year they are hoping to increase that amount by 10%. If they succeed and raise that amount, they intend to donate that money equally to 3 local charities. If all goes well, how much would each of those three charities receive?
3. The pharmacies in Meg's shopping complex offer big discounts on perfume as Mother's Day approaches. One pharmacy usually sells Meg's mum's favourite perfume for $\$ 36$. But for Mother's Day, they offer a 20% discount. What is their special Mother's Day price for that perfume?
4.A British ice-skating champion is attempting to RUN 42 km in less
 than $61 / 2$ hours while wearing her ice skates, to raise money for a charity. If she succeeds, what would be her average speed?
5.Last Saturday was May $4^{\text {th }}$. Why do "Star Wars" fans tend to go a bit weird on May $4^{\text {th }}$? How often does May $4^{\text {th }}$ occur in $21 / 2$ decades?

4. Autumn is a great time of the year, when
leaves on many trees become very colourful before they fall. If a particular tree had 16,000 leaves early in autumn, and lost a quarter of its REMAINING leaves every week, how many leaves would be left on that tree at the end of 4 weeks?
5. In one Australian city, the street performers (called "Buskers") had to go to auditions to get their busking licence. Out of 20 performers, only 17 passed their audition. What percentage failed?

6. One advert had these holiday deals: 6 nights for $\$ 899 ; 5$ nights for $\$ 799 ; 12$ nights for $\$ 1,769$. Same place, same airline. Which of the three deals
 has the cheapest price per night? Put the three in order, low to high.
7. Open-ended Question: Of two mystery numbers, one is exactly 40% of the other. What may those two numbers be? Give 3 possible answers.
